A-Z of Quantitative PCR

Buy on Fivephoton.com
(www.fivephoton.com: Fivephoton Item # QPCR-1)

$119.95, ships free to US addresses: In Stock

edited by
Stephen A. Bustin

Table of Contents:
Preface xxii
List of Contributors xxiii
Acronyms and Abbreviations xxvii

Part I. OVERVIEWS 1
1. Quantification of Nucleic Acids by PCR 3
 Stephen A. Bustin
 1.1. Introduction 5
 1.1.1. PCR Characteristics 6
 1.2. Conventional Quantitative PCR 8
 1.2.1. Concepts 10
 1.2.2. Limitations 12
 1.2.3. Alternatives 13
 1.3. Real-Time Quantitative PCR 15
 1.3.1. Uses 16
 1.3.2. Microdissection 19
 1.3.3. Limitations 22
 1.3.4. PCR 22
 1.3.5. RT-PCR 23
 1.4. Outlook 26
 1.5. Conclusion 29

2. Real-Time RT-PCR: What Lies Beneath the Surface 47
 Jonathan M. Phillips
 2.1. Introduction 49
 2.2. What is RT-PCR? 50
 2.2.1. Reverse Transcription and RT Enzymes 52
 2.2.2. What is Quantitative RT-PCR? 57
 2.2.3. Real-Time RT-PCR 58
 2.2.4. Reaction Controls (IPCs) 58
 2.2.5. Reporter Technologies 60
 2.3. Things That Influence RT-PCR 61
 2.3.1. Why Commercial Kits? 62
2.3.2. Divalent Metal Concentration 64
2.3.3. Primer Concentration 65
2.3.4. Probe Concentration 66
2.3.5. Reverse Transcription Conditions 67
2.4. Synthetic Molecules 70
2.4.1. Substituted Primers and Probes 70
2.4.2. Synthetic RNA Controls 71
2.5. A Word about DNA Polymerases 73
2.5.1. DNA Dependent DNA Polymerases 73
2.5.2. RNA Dependent DNA Polymerases 74
2.6. Tips and Tricks 75
2.6.1. Probes 75
2.6.2. The Right Enzyme for the Job 77
2.7. Buffers 78
2.8. Concluding Remarks 78

3. Quantification Strategies in Real-Time PCR 87
Michael W. Pfaffl
3.1. Introduction 89
3.2. Markers of a Successful Real-Time RT-PCR Assay 90
3.2.1. RNA Extraction 90
3.2.2. Reverse Transcription 91
3.2.3. Comparison of Real-Time RT-PCR with Classical Endpoint Detection Method 93
3.2.4. Chemistry Developments for Real-Time RT-PCR 94
3.2.5. Real-Time RT-PCR Platforms 94
3.2.6. Quantification Strategies in Kinetic RT-PCR 95
3.2.7. Advantages and Disadvantages of External Standards 100
3.2.8. Real-Time PCR Amplification Efficiency 102
3.2.9. Data Evaluation 105
3.3. Automation of the Quantification Procedure 106
3.4. Normalization 108
3.5. Statistical Comparison 111
3.6. Conclusion 112

PART II. BASICS 121
4. Good Laboratory Practice! 123
Stephen A. Bustin and Tania Nolan
4.1. Introduction 125
4.2. General Precautions 126
4.2.1. Phenol 127
4.2.2. Liquid Nitrogen (N₂) 129
4.2.3. Waste Disposal 130
4.3. Equipment 131
4.3.1. Electrophoresis 131
4.3.2. Freezer 131
4.3.3. UV Transilluminators 131
4.3.4. Micropipettes 132
4.3.5. Gloves 134
4.3.6. Eye Protection 135
5. Template Handling, Preparation, and Quantification 141
Stephen A. Bustin and Tania Nolan
5.1. Introduction 143
5.1.1. General Precautions 144
5.2. DNA 146
5.2.1. Preanalytical Steps 146
5.2.2. Sample Collection 150
5.2.3. Disruption 151
5.2.4. Purification 154
5.2.5. Long-Term Storage 159
5.3. RNA 159
5.3.1. Preanalytical Steps 160
5.3.2. General Considerations 161
5.3.3. Tissue Handling and Storage 163
5.3.4. Disruption/Homogenization 165
5.3.5. RNA Extraction 173
5.3.6. Simultaneous DNA Extraction 180
5.3.7. DNA Contamination 182
5.3.8. Preparation of RNA from Flow Cytometrically Sorted Cells 183
5.3.9. Extraction from Formalin-Fixed and Paraffin-Embedded Biopsies 184
5.3.10. Specialized Expression Analysis 187
5.4. Quantification of Nucleic Acids 188
5.4.1. Absorbance Spectrometry 188
5.4.2. Fluorescence 190
5.4.3. Purity 190
5.4.4. Quantification of RNA 191

6. Chemistries 215
Stephen A. Bustin and Tania Nolan
6.1. Introduction 217
6.2. Fluorescence 221
6.2.1. Fluorophores 222
6.2.2. Quenchers 226
6.3. Nonspecific Chemistries 228
6.3.1. DNA Intercalators 228
6.3.2. Advantages 229
6.3.3. Disadvantages 231
6.3.4. Quencher-Labeled Primer (I) 234
6.3.5. Quencher-Labeled Primer (II) 234
6.3.6. LUX™ Primers 235
6.3.7. Amplifluor™ 236
6.4. Specific Chemistries 239
6.4.1. Advantages 240
6.4.1. Disadvantages 240
6.5. Linear Probes 241
6.5.1. ResonSense® and Angler® Probes 241
6.5.2. HyBeacons™ 242
6.5.3. Light-up Probes 243
6.5.4. Hydrolysis (TaqMan®) Probes 244
6.5.5. Lanthanide Probes 246
6.5.6. Hybridization Probes 249
6.5.7. Eclipse™ 249
6.5.8. Displacement Hybridization/Complex Probe 250

6.6. Structured Probes 251
6.6.1. Molecular Beacons 253
6.6.2. Scorpions™ 259
6.6.3. Cyclicons™ 261

6.7. Future Technology 263
6.7.1. Nanoparticle Probes 263
6.7.2. Conjugated Polymers And Peptide Nucleic Acid Probes 263

7. Primers and Probes 279
Stephen A. Bustin and Tania Nolan
7.1. Introduction 281
7.1.1. Hybridization 283
7.2. Probe Design 288
7.3. Hydrolysis Probes 290
7.3.1. Gene Expression Analysis 290
7.3.2. SNP/Mutation Analysis 292
7.4. Hybridization Probes 293
7.4.1. Gene Expression Analysis 293
7.4.2. SNP/Mutation Analysis 294
7.5. Molecular Beacons 294
7.5.1. Gene Expression Analysis 295
7.5.2. SNP/Mutation Analysis 296
7.6. Scorpions™ 296
7.6.1. Gene Expression Analysis 297
7.6.2. SNP/Mutation Analysis 299
7.7. Probe Storage 299
7.8. Primer Design 299
7.9. Amplifluor™ Primers 303
7.10. LUX™ Primers 304
7.11. Oligonucleotide Purification 305
7.12. Recommended Storage Conditions 307
7.13. Example of Primer Design 308
7.14. Nucleic Acid Analogues 311
7.14.1. Peptide Nucleic Acids (PNA) 313
7.14.2. PNA Probe Characteristics 315
7.14.3. Locked Nucleic Acids LNA™ 317
7.14.5. Minor Groove Binding Probes 319

8. Instrumentation 329
Stephen A. Bustin and Tania Nolan
8.1. Introduction 331
8.1.1. The Principle 332
8.1.2. Excitation Source 333
8.1.3. Filters 335
8.1.4. Photodetectors 337
8.1.5. Sensitivity 339
8.1.6. Dynamic Range 340
8.1.7. Linearity 340
8.2. Real-Time Instruments 341
8.2.1. ABI Prism® 345
8.2.2. Bio-Rad Instruments 346
8.2.3. Stratagene’s Instruments 348
8.2.4. Corbett Research Rotor-Gene RG-3000 350
8.2.5. Roche Applied Science 353
8.2.6. Techne Quantica 355
8.2.7. Cepheid Smart Cycler® 356

8.3. Outlook 355

9. Basic RT-PCR Considerations 359
Stephen A. Bustin and Tania Nolan
9.1. Introduction 361
9.2. Total RNA vs. mRNA 364
9.3. cDNA Priming 364
 9.3.1. Random Primers 365
 9.3.2. Oligo-dT 366
 9.3.3. Target-Specific Primers 366
9.4. Choice of Enzyme 366
 9.4.1. RT Properties 367
 9.4.2. AMV-RT 370
 9.4.3. MMLV-RT 371
 9.4.4. DNA-Dependent DNA Polymerases 372
 9.4.5. Omniscript/Sensiscript 372
9.5. RT-PCR 372
 9.5.1. Two-Enzyme Procedures: Separate RT and PCR Enzymes 373
 9.5.2. Single RT and PCR Enzyme 374
 9.5.3. Problems with RT 375
9.6. One-Enzyme/One-Tube RT-PCR Protocol 376
 9.6.1. Preparations 376
 9.6.2. Primers and Probes 376
 9.6.3. RT-PCR Enzyme 377
 9.6.4. RT-PCR Solutions 377
 9.6.5. Preparation of Master Mix 377
 9.6.6. Preparation of Standard Curve 378
 9.6.7. Template Reaction 380
 9.6.8. Troubleshooting 381
9.7. Two-Enzyme/Two-Tube RT-PCR Protocol 382
 9.7.1. RT-PCR Enzymes 382
 9.7.2. RT-PCR Solutions 382
 9.7.3. Preparation of Master Mix 382
 9.7.4. Preparation of Standard Curve 383
 9.7.5. Unknown Template Reaction 385
 9.7.6. Troubleshooting 386

10. The PCR Step 397
Stephen A. Bustin and Tania Nolan
10.1. Introduction 399
10.2. Choice of Enzyme 400
10.3. Thermostable DNA Polymerases 401
 10.3.1. Fidelity 406
 10.3.2. Processivity and Elongation Rates 406
 10.3.3. Thermostability 407
10.3.4. Robustness 407

10.4. To UNG or not to UNG 410

10.5. Hot Start PCR 411

10.6. PCR Assay Components 413
 10.6.1. Enzyme Concentration 413
 10.6.2. Mg²⁺ Concentration 414
 10.6.3. Primers 414
 10.6.4. dNTPs 415
 10.6.5. Template 416
 10.6.6. Inhibition of PCR by RT Components 417
 10.6.7. Water 417

10.7. Reaction Conditions 417
 10.7.1. Denaturation Temperature 418
 10.7.2. Annealing Temperature 418
 10.7.3. Polymerization Temperature 418
 10.7.4. Reaction Times 419
 10.7.5. Multiplexing 419
 10.7.6. Additives 419

10.8. PCR Protocols for Popular Assays 422
 10.8.1. Preparations 423
 10.8.2. Double Stranded DNA Binding Dye Assays 424
 10.8.3. Hydrolysis (TaqMan) Probe Reaction 426
 10.8.4. Molecular Beacon Melting Curve to Test Beacon and Scorpion Assays 429

10.8.5. Molecular Beacon/Scorpion Reaction 430

10.9. General Troubleshooting 431

11. Data Analysis and Interpretation 439

Stephen A. Bustin and Tania Nolan

11.1. Introduction 441
11.2. Precision, Accuracy, and Relevance 442
11.3. Quantitative Principles 444
11.4. Effect of Initial Copy Numbers 446
11.5. Monte Carlo Effect 447
11.6. Amplification Efficiency 448
11.7. Relative, Comparative or Absolute Quantification 449
11.8. Absolute Quantification 450
11.9. Standard Curves 451
 11.9.1. Recombinant DNA 454
 11.9.2. Genomic DNA 455
 11.9.3. SP6 or T7-Transcribed RNA 456
 11.9.4. Universal RNA 456
 11.9.5. Sense-Strand Oligonucleotides 457
11.10. Relative Quantification 458
11.11. Normalization 460
 11.11.1. Tissue Culture 461
 11.11.2. Nucleated Blood Cells (NBC) 462
 11.11.3. Solid Tissue Biopsies 462
 11.11.4. Cell Number 463
 11.11.5. Total RNA 463
 11.11.6. DNA 464
 11.11.7. rRNA 464
11.12. Reference Genes (Housekeeping Genes) 465
11.13. Basic Statistics 467
 11.13.1. Data Presentation 469
 11.13.2. Mean and Median 469
 11.13.3. Standard Deviation 470
 11.13.4. Plots 470
 11.13.5. Relative (Receiver) Operating Characteristics 471
 11.13.6. Probability 473
 11.13.7. Parametric and Nonparametric Tests 475
11.14. Conclusion 481

12. The qPCR Does Not Work? 493
 Stephen A. Bustin and Tania Nolan
 12.1. Introduction 495
 12.2. Problem: What Is a Perfect Amplification Plot? 496
 12.3. Problem: Too Much Target 498
 12.9.1. Solution 499
 12.4. Problem: Amplification Plot Is not Exponential 499
 12.4.1. Solution 500
 12.5. Problem: Duplicates Give Widely Differing \(C_t \)s 500
 12.5.1. Solution 502
 12.6. Problem: No Amplification Plots 502
 12.6.1. Solution 502
 12.7. Problem: The Probe Does not Work! 506
 12.7.1. Solution 510
 12.8. Problem: The Data Plots Are Very Jagged 511
 12.8.1. Solution 511
 12.9. Problem: The Amplification Plot for the Standard Curve Looks Great
 BUT............... 512
 12.9.1.The Gradient of the Standard Curve Is Greater Than -3.3 514
 12.9.2.The Standards Aren’t Diluting! 515
 12.9.3.Using SYBR Green the Gradient of the Standard Curve Is Less Than -3.3 517
 12.9.4.Using a Sequence Specific Oligonucleotide Detection System the Gradient of the Standard Curve Is Less Than -3.3 518
 12.10. Problem: The Amplification Plots Are Strange Wave Shapes 521
 12.10.1. Solution 522
 12.11. Problem: The Amplification Plot Goes Up, Down and All Around 523
 12.11.1. Solution 523

PART III. SPECIFIC APPLICATIONS 525

13. Getting Started—The Basics of Setting up a qPCR Assay 527
 Tania Nolan
 13.1. Introduction 529
 13.2. Optimization 531
 13.3. Primer and Probe Optimization Protocol 532
 13.4. Optimization of Primers Concentration Using SYBR Green I 534
 13.5. SYBR Green I Optimization Data Analysis 535
 13.6. Examination of the Melting Curve 535
 13.7. Optimization of Primer Concentration Using Fluorescent Probes 537
 13.8. Molecular Beacon Melting Curve 537
 13.9. Primer Optimization Reactions in Duplicate 538
14. **Use of Standardized Mixtures of Internal Standards in Quantitative RT-PCR to Ensure Quality Control and Develop a Standardized Gene Expression Database**
 James C. Willey, Erin L. Crawford, Charles A. Knight, Kristy A. Warner, Cheryl R. Motten, Elizabeth Herness Peters, Robert J. Zahorchak, Timothy G. Graves, David A. Weaver, Jerry R. Bergman, Martin Vondrecek, and Roland C. Grafstrom

14.1. **Introduction**
 14.1.1. Controls Required for RT-PCR to Be Quantitative
 14.1.2. Control for Variation in Loading of Sample into PCR Reaction
 14.1.3. Control for Variation in Amplification Efficiency
 14.1.4. Control for Cycle-to-Cycle Variation in Amplification
 14.1.5. Control for Gene-to-Gene Variation in Amplification Efficiency
 14.1.6. Control for Sample-to-Sample Variation in Amplification Efficiency
 14.1.7. Control for Reaction-to-Reaction Variation in Amplification Efficiency
 14.1.8. Schematic Comparison of StaRT-PCR to Real-Time

14.2. **Materials**
14.3. **Methods**
 14.3.1. RNA Extraction and Reverse Transcription
 14.3.2. Synthesis and Cloning of Competitive Templates
 14.3.3. Preparation of Standardized Mixtures of Internal Standards

14.4. **StaRT-PCR**
 14.4.1. Step-by-Step Description of StaRT-PCR Method

14.5. **The Standardized Expression Measurement Center**
14.6. **Technology Incorporated by the SEM Center**
 14.6.1. Automated Preparation of StaRT-PCR Reactions
 14.6.2. Electrophoretic Separation of StaRT-PCR Products
 14.6.3. Design of High-Throughput StaRT-PCR Experiments

15. **Standardization of qPCR and qRT-PCR Assays**
 Reinhold Mueller, Gothami Padmbandu, and Roger H. Taylor

15.1. **Introduction**
15.2. **Platforms**
 15.2.1. Validation of Instrument Specification

15.3. **Detection Chemistries**
15.4. **Conclusion**

16. **Extraction of Total RNA from Formalin-Fixed Paraffin-Embedded Tissue**
 Fraser Lewis and Nicola J. Maughan

16.1. **Introduction**
16.2. **Extraction of RNA from Clinical Specimens**
16.3. **Effect of Fixation**
16.4. **Extraction of total RNA from Formalin-Fixed, Paraffin-Embedded Tissue**
16.5. **Use of RNase Inhibitors**
16.6. **Protocol for the Extraction of total RNA from Formalin-Fixed, Paraffin-Embedded Tissue**
 16.6.1. **Method**
16.7. **Reverse Transcription of Total RNA from Paraffin Sections**
16.7.1. Method 600
16.8. Design of Real-Time PCR Assays 601

17. **Cells-to-cDNA II: RT-PCR without RNA Isolation** 605
Quoc Hoang and Brittan L. Pasloske
17.1. Introduction 607
17.2. Materials 609
 17.2.1. Materials Supplied with Cells-to-cDNA II 609
 17.2.2. Materials for Real-Time PCR 609
 17.2.3. Heating Sources 610
17.3. Method 610
 17.3.1. Lysis and DNase I Treatment 610
 17.3.2. Reverse Transcription 611
 17.3.3. Real-Time PCR 611
 17.3.4. Data Analysis 612
17.4. Notes 613

18. **Optimization of Single and Multiplex Real-Time PCR** 619
Marni Brisson, Shannon Hall, R. Keith Hamby, Robert Park, and Hilary K Srere
18.1. Introduction 621
 18.1.1. Why Multiplex? 622
18.2. Getting Started—Proper Laboratory Technique 623
 18.2.1. Avoiding Contamination 623
 18.2.2. Improving Reliability 624
18.3. Designing Probes for Multiplexing 624
 18.3.1. Types of Probes 624
 18.3.2. Reporters and Quenchers 624
 18.3.3. Analyzing Probe Quality 626
18.4. Standard Curves 627
 18.4.1. Interpreting Standard Curves 627
 18.4.2. Proper Use of Standards 628
18.5. Optimizing Individual Reactions before Multiplexing 630
 18.5.1. Definition of Efficiency 630
 18.5.2. Designing Primers for Maximum Amplification Efficiency 631
 18.5.3. Designing Primers for Maximum Specificity 632
 18.5.4. Equalizing Amplification Efficiencies 635
18.6. Optimization of Multiplex Reactions 636
 18.6.1. Comparing Individual and Multiplexed Reactions 636
 18.6.2. Optimizing Reaction Conditions 636
18.7. Summary 640

19. **Evaluation of Basic Fibroblast Growth Factor mRNA Levels in Breast Cancer** 643
Pamela Pinzani, Carmela Tricarico, Lisa Simi, Mario Pazzagli, and Claudio Orlando
19.1. Introduction 645
19.2. Materials and Methods 647
 19.2.1. Cancer Samples 647
 19.2.2. Materials 647
 19.2.3. Sample Preparation 648
 19.2.4. Quantitative Evaluation of bFGF mRNA Expression 648
 19.2.5. Statistical Analysis 648
19.3. Results 649
 19.3.1. Intra-Assay and Inter-Assay Variability 649
 19.3.2. Quantification of bFGF and VEGF mRNA Levels 649
19.3.3. Clinicopathologic Characteristics 650
19.4. Discussion 653

20. Detection of “Tissue-Specific” mRNA in the Blood and Lymph Nodes of Patients without Colorectal Cancer 657
Stephen A. Bustin and Sina Dorudi
20.1. Introduction 659
20.2. Materials and Methods 661
 20.2.1. Patients and Controls 661
 20.2.2. Tumors and Lymph Nodes 661
 20.2.3. RNA Extraction 662
 20.2.4. Primers and Probes 663
 20.2.5. RT-PCR Reactions 663
 20.2.6. Quantification 664
 20.2.7. Normalization 664
 20.2.8. Quality Standards 665
20.3. Results 665
 20.3.1. ck20 mRNA in Colorectal Cancers 665
 20.3.2. ck20 mRNA in the Peripheral Blood of Patients 665
 20.3.3. ck20 mRNA in the Peripheral Blood of Healthy Volunteers 667
 20.3.4. ck20 Expression in Lymph Nodes 667
 20.3.5. ck20 Expression in Other Human Tissues 667
20.4. Discussion 668

Cristina Hartshorn, John E. Rice, and Lawrence J. Wangh
21.1. Introduction 677
21.2. Key Features of Real-Time RT-PCR 680
21.3. Primer Design 681
21.4. Avoidance of the HMG Box within Sry 681
21.5. Amplicon Selection and Verification 682
21.6. Molecular Beacons Design 684
21.7. Multiplex Optimization 686
21.8. Blastomere Isolation 688
21.9. DNA and RNA Isolation 691
21.10. Reverse Transcription 694
21.11. Real-time PCR and Quantification of Genomic DNA and cDNA Templates in Single Embryos 696
 21.12. Real-time PCR and Quantification of Genomic DNA and cDNA Templates in Single Blastomeres 698

22. Single Cell Global RT and Quantitative Real-Time PCR 703
Ged Brady and Tania Nolan
22.1. Introduction 705
22.2. PolyAPCR Overview 706
22.3. Ensuring Ratio of RNAs in Is Equal to Ratio of cDNAs out 707
22.4. Why Carry out Single Cell Analysis? 707
22.5. Picking the “Right” Single Cell 709
22.6. Experimental Details of PolyAPCR 710
 22.6.1. Global Amplification of cDNA to Copy All Polyadenylated RNAs (PolyAPCR) 710
22.6.2. Preparation of Gene Specific Quantity Standard Series 712
22.6.3. TaqMan™ Real-Time Quantitative PCR to Quantify Specific Gene Expression 712

Irina A. Afonina, Yevgeniy S. Belousov, Mark Metcalf, Alan Mills, Silvia Sanders, David K. Walburger, Walt Mahoney, and Nicolaas M. J. Vermeulen
23.1. Introduction 719
23.2. General Discussion 721
23.3. Materials 723
23.3.1. Preparation of Nucleic Acids 723
23.3.2. Primers and Probes 724
23.3.3. Amplification Enzyme 724
23.3.4. Amplification Solutions 724
23.4. Method 724
23.4.1. Amplification 724
23.4.2. Melting Curve Analysis 725
23.5. Instruments 726
23.6. Data Interpretation 726
23.6.1. Rotor-Gene 726
23.6.2. Other Instruments 726
23.7. Notes 727
23.8. Summary 730

24. Genotyping Using MGB-Hydrolysis Probes 733
Jane Theaker
24.1. Introduction 735
24.1.1. Improved Chemistries 736
24.1.2. Dark Quenchers 736
24.2. Evaluation of a Single-Tube Genotyping Assay 738
24.3. Troubleshooting a Genotyping Assay 739
24.3.1. Problem: No Signal or Poor Signal 739
24.3.2. Problem: Probe Cross-Hybridization 741
24.3.3. Problem: Spectral Crosstalk 742
24.4. The Transition from Real-Time to Endpoint Genotyping Assay 744
24.5. General Practical Points and Hints 745
24.5.1. Plasticware and its Compatibility with Hardware 745
24.5.2. ROX Including Baseline Drift 746
24.6. Software 750
24.6.1. MFold 750
24.6.2. HyTher™ Server 1.0 750
24.6.3. Primer Express® Software 751
24.6.4. Oligo Primer Analysis Software 751
24.6.5. Beacon Designer 2.1 752
24.6.6. Microsoft Excel 752
24.6.7. JMP Version 5.1 752
24.7. Reagents and Buffers 752
24.7.1. Alternative Suppliers of Reagents 753
24.7.2. Formulate Your Own Reagents 754
24.8. Melting Curves 755
 24.8.1. Types of Melting Curves 755
 24.8.2. Performing a Pre-PCR Melting Curve 756
 24.8.3. Post-PCR Melting Curves 760
24.9. A Useful Protocol to Quantify Total Human DNA Based on Detection of the APO B Gene 763
 24.9.1. Primer and Probe Sequences 763

25. Scorpions Primers for Real-Time Genotyping and Quantitative Genotyping on Pooled DNA 767
David M. Whitcombe, Paul Ravetto, Antony Halsall, and Nicola Thelwell
 25.1. Introduction 769
 25.2. Genotyping 770
 25.3. Scorpions 771
 25.3.1. Structure and Mechanism 771
 25.3.2. Benefits of the Scorpions Mechanism 772
 25.4. Methods 773
 25.4.1. Design of ARMS Allele-Specific Primers 774
 25.4.2. Design and Synthesis of Scorpions 774
 25.5. Examples 777
 25.5.1. Genotyping with Allele Specific Primers and Intercalation 777
 25.5.2. Single-Tube Genotyping 778
 25.5.3. Quantitative Genotyping of Pooled Samples 779
 25.6. Conclusions 780

26. Simultaneous Detection and Sub-Typing of Human Papillomavirus in the Cervix Using
 Real-Time Quantitative PCR 783
Rashmi Seth, Tania Nolan, Triona Davey, John Rippin, Li Guo, and David Jenkins
 26.1. Introduction 785
 26.2. PolyAPCR Overview 788
 26.3. Results 790
 26.4. Conclusion 793

APPENDICES 797
Appendix A1. Useful Information 799
 A1.1. Sizes and Molecular Weights of Eukaryotic Genomic DNA and rRNAs 801
 A1.2. Nucleic Acids in Typical Human Cell 803
 A1.3. Nucleotide Molecular Weights 803
 A1.4. Molecular Weights of Common Modifications 804
 A1.5. Nucleic Acid Molecular Weight Conversions 804
 A1.6. Nucleotide Absorbance Maxima and Molar Extinction Coefficients 807
 A1.7. Conversions 807
 A1.8. DNA Conformations 812
 A1.9. Efficiency of PCR Reactions 812
 A1.10. Centrifugation 813
 A1.11. Splice Function 813
Appendix A2. Glossary 815
Index 835